Commercial, Instrument, Private, UAS/Drones, Uncategorized

Certificate of Authorization for My Employer

I starting the process for the approval of  an FAA COA approval for Miami Dade County Transportation and Publics Works Department. This was in May of 2015. The application has gone back and forward a number of times. As of today 5/4/2016 is not  approved.

As this was going on a change in the COA application requirements has taken place. In a matter of weeks I was awarded a Blanket COA (new Application submitted) to 400 AGL, Class E and  including a very extensive Operational Area. With this approval comes a great degree of responsibility.

Fly responsibly, you are  operation equipment that could be harmful to all other aircrafts.

I was on final approach and the tower reported drone spotted at 1000 ft on 10R (ten right) landing path. I never spotted the drone. That was scary for me not knowing if I was going to contact another flying object that could have caused: at minimal property damage not to mention possible crashing my vessel and death.

Please make sure you operate away from airports and other Areas which could be found in an application called “B4UFLY” on the app store and or Google Play. I was a beta tester for this app and its really great and a tool for you to have if you are to operate a drone.

Remember also drones from 0.55 lbs to 55 lbs must be registered with the FAA.


The Air Traffic Control SystemFlorida Aero Club Fall Fly In

Commercial, Instrument



Why Hold’s?

Traffic Spacing

Course Reversal

Lost Communications

Weather (wait to Clear)

Missed Approach

What is it?

Airspace in the shape of a racetrack used by ATC, for traffic delay of arrivals, over a given fix on NAVAID’S, either intersection of airways or intersection.

Fixes used:







Speeds (propeller a\c is 175 kn then as depicted on approach plates under a\c category)

200 kn-(SFC – 6000)

230 kn (6001-14000)(210 when published)

265 kn (14001 – ∝ )

Leg times

1 minute below 14,000

1.5 minutes above 14,000

Turns: a standard turn is to the right. If turns were to the left, it would be stated in the clearance. These are referred to as non standard turns.

Bank: all turns are to Standard rate. Never to exceed 25°.

Recommended Entries: explain and show examples of each entry

Direct: if the aircraft nose after reaching the fix, is on the fixed arc portion.

Teardrop: if the aircraft’s nose after reaching the fix, is on the holding side of the track.

Parallel: if the aircraft nose after reaching the fix, on the non holding side of the track.

Clearances Elements:

  1. Cardinal direction from the holding fix.
  2. Fix name
  3. Course (radial, airway or route)
  4. Leg length in miles if DME or RNAV is used
  5. Direction of turns (omitted is standard turns are to be used)
  6. Expect further clearance (EFC)

The simplest hold clearance is “ hold as published

Example of hold Clearance: “N8724M cleared to the “ABC” VOR; hold East on the 90 radial, EFC 30 min past the hr.”

Holding Instructions:

  • If you arrive at your clearance limit before clearance beyond the fix, ATC expects to maintain the last assigned altitude and begin holding in accordance to depicted pattern.
  • If a pattern is not shown, hold standard turns on the course you approached the fix. Immediately request further clearance.
  • ATC will issue clearance at least 5 minutes ETA to the fix if delays are expected.
  • If a hold is published and controller does not issue a complete clearance, the pilot is expected to fly the hold as depicted.
  • When a/c is 3 minutes or less from a clearance limit, and no clearance beyond the point has received, the pilot is expected to start a speed reduction to cross the fix at or below the maximum holding airspeed.

Holding pattern and its components:

A Holding and non-holding sides

B Inbound course

C Outbound course

D Legs

E Abeam Point

Holding side

Non-Holding Side

Wind Effects on Holding Patterns:

In compliance with the holding pattern procedure given in AIM, the symmetrical racetrack pattern cannot be tracked when winds exist.

Pilots are expected to:

  • Compensate for the effect of a known wind except when turning
  • Adjust outbound timing to achieve a one minute inbound leg. (1.5 minutes above 14,000 feet)

See pp 10-11 on Instrument Hand Book

Figure 10-5

References AIM 5-3-7

Chapter 10 Inst HB (8083-15) pp 10-10

Commercial, Instrument, Private




Regulatory (Class A, B, C, D, E, restricted and Prohibited)

Non Regulatory (Military Operating Areas, Warning Areas, Alert Areas, Control Firing Areas”CFR’s”)


Controlled Uncontrolled Special Use Other Airspace

Hierarchy of Overlapping Airspace

When overlapping exist most restrictive airspace applies Class A more restrictive than Class B. Class B more restrictive than Class C and so on.

Basic VFR Weather Minimums

See Table 3-1-1 Aim Chapter 3

I – Controlled Airspace

Class A:

Definition: 18000 AGL to FL 60(60000 AGL)

Operation Rules: File IFR and ATC Clearance, Mode C(only one not charted)

Class B:

Definition: Tailored, usually SFC-10,000 AGL

2 or more Layers (upside Down wedding cake) Designated to contain all published Instrument Procedures

Operation Rules: Clearance Req.

Two Way VOR or Tacan for IFR operations(unless authorized not to) Mode C (unless authorized to not have) 1 hr prior notice Minimum of Private Ticket to land/takeoff the BBB 12(AIM 3-2-3)

Commercial, Instrument, Private



Air density is a result of the relationship between temperature  and pressure. This relationship is such that density is  inversely related to temperature and directly related to pressure. For a constant pressure to be maintained as temperature increases, density must decrease, and vice versa. For a constant temperature to be maintained as pressure increases, density must increase, and vice versa.


Standard Atmosphere

In the standard atmosphere, sea level pressure is 29.92″ Hg and the temperature is 15 °C (59 °F). The standard lapse rate for pressure is approximately a 1″ Hg decrease per 1,000 feet increase in altitude. The standard lapse rate for temperature is a 2 °C (3.6 °F) decrease per 1,000 feet increase, up to the tropopause.


Pressure Altitude

There are two measurements of the atmosphere that pilots must understand: pressure altitude and density altitude.


Density Altitude

Density altitude is pressure altitude corrected for nonstandard temperatures, and is used for determining aerodynamic performance in the nonstandard atmosphere.   However, a known density occurs for any one temperature and pressure altitude combination.


Aerodynamic Factors

Introduction This chapter outlines the factors affecting aircraft performance as a result of aerodynamics, including a review of basic aerodynamics, the atmosphere, and the effects of icing. Pilots need an understanding of these factors for a sound basis for prediction of aircraft response to control inputs, especially with regard to instrument approaches, while holding, and when operating at reduced airspeed in instrument meteorological conditions (IMC).

Review of Basic Aerodynamics

As an instrument pilot, you must understand the relationship and differences between the aircraft’s flightpath, angle of attack, and pitch attitude

The Four Forces The four basic forces acting upon an aircraft in flight are: lift, weight, thrust, and drag. The aerodynamic forces produced by the wing create lift. A byproduct of lift is induced drag. Induced drag combined with parasite drag (which is the sum of form drag, skin friction, and interference drag) produce the total drag on the aircraft. Thrust must equal total drag in order to maintain speed.

Newton’s First Law Newton’s First Law of Motion is the Law of Inertia, which states that a body in motion will remain in motion, in a straight line, unless acted upon by an outside force.

Newton’s Second Law Newton’s Second Law of Motion is the Law of Momentum, which states that a body will accelerate in the same direction as the force acting upon that body, and the acceleration will be directly proportional to the net force and inversely proportional to the mass of the body.

Newton’s Third Law Newton’s Third Law of Motion is the Law of Reaction, which states that for every action there is an equal and opposite reaction.

Commercial, Instrument, Private

Recover From Unusual Attitudes


To recognize undesirable flight attitude and to apply appropriate controls to correct and recover the A/C.


  • Factors that contribute:
    • Instrument failure
    • Disorientation
    • Fixation


Nose-High Attitude:

  • decreasing AS
  • increasing ALT
  • high rate climb VSI
  • nose high AI


Nose-Low Attitude:

  • increase AS
  • loss of ALT
  • high rate descent VSI
  • nose down AI







Partial panel Unusual Attitude Recovery *( very important to read the instruments and confirm which one has failed before making correction)

Usually loss of Gyro instruments HI and AI:

  • use TC to stop the turn
  • ALT, VSI to stop descent or climb (change of direction – passing through level flight)
  • AI can be used for pitch if ALT and VSI fail



Level Turns

Objective: To develop the pilots knowledge and skill in performing level turns in IMC

A turn is a maneuver used to change the heading of the aircraft while maintaining constant ALT (PTS +/-10’, +/- 100ft)

  • All turns are preformed at standard rate – 3’ per second (2 min turn per 360’)
  • Relationship between airspeed and bank angle needed for a standard rate turn (KIAS/10) + 7
  • Instruments used
  1. AI – is primary for initially rolling into and out of the turn and supports pitch control
  2. *Turn coordinator- primary in the turn used to maintain standard rate and to indicate the quality of the turn
  3. *ALT – primary for pitch during the turn
  4. HI – all changes of direction (turns)  are a result of a change in bank
  5. ASI – power

Entering and maintaining a level turn

  • Apply coordinated aileron and rudder pressure in direction of the turn. Use AI to initially establish the bank angle then verify standard rate with the turn coordinator
  • *During turn use ALT and AI  to maintain level pitch attitude- back pressure may be needed, trim it off as required
  • When turning to a heading use HI to judge when to roll out (1/2 bank angle)

Rolling out of the turn

  • Newton’s first law (law of inertia), aircraft will continue to turn at standard rate until corrected
  • *Lead the roll out  by half the bank angle set i.e. 15’ bank means roll out 7-8’ before
  • Small corrections – Bank angle should never exceed the # of degrees to be turned
  • Turns of less than 20’ should be made at half standard rate